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General Optimization Algorithms

Each possible solution is evaluated

• Deterministic algorithms

• Stochastic algorithms
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Deterministic Algorithms

• Hill climbing

• Branch and bound

• Depth-first

• Breadth-first

• Best-first

•lambda iteration 

•Newton’s method 

•Gradient method 

•Linear Programming 

•Interior Point method

Stochastic Algorithms

•Genetic Algorithm 

•Simulated Annealing 

•Evolutionary 

Programming 

•Particle Swarm 

Optimization 

•Bacterial Foraging 

•Clonal Algorithm 

•Memetic Algorithm
•Ant Colony Optimization

•Frog Leaping Algorithm
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Why EC ????



Guess !!!!!



Direction Of 

negative 

gradient

descent?



But What about these multi-modal, 

noisy and even discontinuous 

functions?

Gradient based methods get trapped in a 

local minima or the  Function itself may be 

non differentiable.



Way Out: Multi-Agent Optimization in 
Continuous Space

Randomly

Initialized Agents

Agents



Most Agents 

are near

Global Optima

After Convergence



Most recent multi-agent stochastic parallel 
search techniques is:

Particle Swarm Optimization 

(PSO; Eberhart & Kennedy, 

IEEE Evocomp, 1995)





Particle Swarm Optimization (PSO)

• PSO is a robust stochastic optimization 

technique based on the movement and 

intelligence of swarms.

• PSO applies the concept of social interaction to 

problem solving.
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SWARMS



Inventors (1995)

Russell Eberhart James Kennedy

(electrical engineer)             (social-psychologist)
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Why do animals swarm?

• Defense against predators

• Enhanced predator detection

• Minimizing chance of capture

• Enhanced foraging success

• Better chances to find a mate

• Decrease of energy consumption
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PSO Contin….

• It uses a number of agents (particles) that

constitute a swarm moving around in the

search space looking for the best solution.

• Each particle is treated as a point in a N-

dimensional space which adjusts its “flying”

according to its own flying experience as

well as the flying experience of other

particles.
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• Each particle keeps track of its coordinates in

the solution space which are associated with

the best solution (fitness) that has achieved so

far by that particle. This value is called

personal best , pbest.

PSO Contin….
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PSO Continues

• Another best value that is tracked by the PSO is

the best value obtained so far by any particle in

the neighborhood of that particle. This value is

called gbest.

• The basic concept of PSO lies in accelerating

each particle toward its pbest and the gbest
locations, with a random weighted accelaration

at each time step as shown in Fig.1
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Fig.1 Concept of modification of a searching point by PSO

sk : current searching point.                                                                               

sk+1 : modified searching point.                                                                         

vk : current velocity.                                                                                                   

vk+1 : modified velocity.                                                                                      

vpbest : velocity based on pbest.                                                                          

vgbest : velocity based on gbest

PSO Contin….
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PSO Contin….

Each particle tries to modify its position using 

the following information:

 the current positions, 

 the current velocities,

 the distance between the current position 

and pbest,

 the distance between the current position 

and the gbest. 
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Mathematical Equation
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•The modification of the particle’s position can be 

mathematically modeled according the following 

equation :

Vi
k+1 = wVi

k +

c1 rand1(…) x (pbesti-si
k) + 

c2 rand2(…) x (gbest-si
k) …..   (1)



where, 

vi
k : velocity of  agent i at iteration k,                                                                                                  

w: weighting function,                                                                                                        

C1 and C2 : weighting factor,                                                                                                          

rand : uniformly distributed random number 

between 0 and 1,                                                                             

si
k : current position of agent i at iteration k,                                                                                                   

pbesti : pbest of agent i,                                                                                                                           

gbest: gbest of the group.
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Aspects of Basic PSO (movement of particles

1( )X t

1( 1)X t 

2 ( )X t

2 ( 1)X t 

bestG

1( )bestP X

2( )bestP X

1

n
Original velocity

Velocity toward Gbest

Velocity toward Pbest

Resultant velocity

Individual particles (1 and 2) are accelerated toward the location of the global best 

solution (Gbest) and the location of their own personal best (Pbest) in the n-

dimensional space.

Particle 1

Particle 2

Global best

Personal best



Particle Swarm Optimization –

Animation

x1

x2

fitness

min

max

search space
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Particle Swarm Optimization –

Animation
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f( x) = x(x-8)

Consider a small swarm of particles for the above 

single dimensional function: 

Initial Position and velocities of the particles at time t=0: Randomly initialized 

In the range (-10, 10)

Particle 

number

Position 

x(0) at t = 0

Velocity v 

at t = 0

f (x)

1 7 3 -7

2 -2 5 20

3 9 6 9

4 -6 -4 84

So, the fittest particle is particle 1 and we set Pgb = 7

And Plb =Xi 



Initial Distribution of the Particles over the fitness landscape 



Change in position of the particles in next iteration:

For this small scale PSO problem, we set C1 = C2 = 2.0,ω = 0.5

Particle 1>

V1(1) = 0.5*3 + 2*0.6*(7 – 7) + 2*0.4*(7 – 7) = 1.5

X1(1) = 7+1.5 = 8.5          

Fitness f (X(1)) =4.25

Vi(t+1)=φ.Vi(t)+C1.rand(0,1).(Plb-Xi(t))+C2.rand(0,1).(Pgb-Xi(t)) 

Xi(t+1)=Xi(t)+Vi(t+1)

Particle 2>

V2(1) = 0.5*5 + 2*0.3*(-2 + 2 ) + 2*0.4*(7 – (-2)) = 6.5

X2(1) = -2+6.5 = 3.5          

Fitness f (X(1)) =-9.75



Particle 3>

V3(1) = 0.5*6 + 2*0.8*(9 - 9 ) + 2*0.95*(7 – 9) = -0.8

X3(1) = 6 – (-0.8) = 6.8          

Fitness f (X(1)) =-8.16

Particle 4>

V4(1) = 0.5*(-4) + 2*0.38*(-6 + 6 ) + 2*0.45*(7 – (-6)) = 9.7

X4(1) = -6 + 9.3 = 3.7          

Fitness f (X(1)) =-15.91

Here we go for the next iteration: 

Particle 

number

Position at t = 1 Velocity at t = 1 f (x) Plb for

t = 2

Pgb for

t = 2

1 8.5 (at t = 0, 7) 1.5 (at t = 0, 3) 4.25 (at

t = 0, -7)

7 3.7

2 6.5 (-2) 3.5 (5) -9.75 (20) 6.5 3.7

3 6.8 (9) -0.8 (6) -8.16 (9) 6.8 3.7

4 3.7 (-6) 9.7 (-4) -15.91(84) 3.7 3.7



Distribution of the Particles 

over the fitness landscape 

at t = 1

Distribution of the Particles 

over the fitness landscape 

at t = 5

Best particle at t = 5

Pgb = 3.95

f(Pgb) = -15.99



Rastrigin Function (n=2)
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Iteration 1

Iteration no = 1 (rand1 = 0.07, rand2 = 0.14)

Particle i
Initial particle

f(x)
Individual best Global best Velocity Updated particle

x1 x2 x1 x2 x1 x2 v1 v2 x1 x2

1 0.85 2.06 9.79 0.85 2.06

0.85 2.06

0 0 0.85 2.06

2 -2.17 -3.75 33.95 -2.17 -3.75 0.85 1.63 -1.32 -2.12

3 3.7 -1.97 30.84 3.7 -1.97 -0.8 1.13 2.9 -0.84

4 3.49 0.44 51.65 3.49 0.44 -0.74 0.45 2.75 0.89

5 -3.49 -1.07 34.26 -3.49 -1.07 1.22 0.88 -2.27 -0.19



Iteration 2

Iteration no = 2 (rand1 = 0.63, rand2 = 0.05)

Particle i
Initial particle

f(x)
Individual best Global best Velocity Updated particle

x1 x2 x1 x2 x1 x2 v1 v2 x1 x2

1 0.85 2.06 9.79 0.85 2.06

0.85 2.06

0 0 0.85 2.06

2 -1.32 -2.12 23.2 -1.32 -2.12 0.3 0.58 -1.02 -1.54

3 2.9 -0.84 15.67 2.9 -0.84 -0.29 0.4 2.61 -0.44

4 2.75 0.89 23.92 2.75 0.89 -0.26 0.16 2.49 1.05

5 -2.27 -0.19 22.76 -2.27 -0.19 0.43 0.31 -1.84 0.12



Iteration 3

Iteration no = 3 (rand1 = 0.1, rand2 = 0.2)

Particle i
Initial particle

f(x)
Individual best Global best Velocity Updated particle

x1 x2 x1 x2 x1 x2 v1 v2 x1 x2

1 0.85 2.06 9.79 0.85 2.06

0.85 2.06

0 0 0.85 2.06

2 -1.02 -1.54 23.18 -1.02 -1.54 0.78 1.5 -0.24 -0.04

3 2.61 -0.44 44.01 2.9 -0.84 -0.68 0.96 1.93 0.52

4 2.49 1.05 27.77 2.75 0.89 -0.63 0.39 1.86 1.44

5 -1.84 0.12 10.75 -1.84 0.12 1.12 0.81 -0.72 0.93



Iteration 4

Iteration no = 4 (rand1 = 0.56, rand2 = 0.55)

Particle i
Initial particle

f(x)
Individual best Global best Velocity Updated particle

x1 x2 x1 x2 x1 x2 v1 v2 x1 x2

1 0.85 2.06 9.79 0.85 2.06

-0.24 -0.04

-1.2 -2.31 -0.35 -0.25

2 -0.24 -0.04 9.75 -0.24 -0.04 0.08 0.15 -0.16 0.11

3 1.93 0.52 24.87 2.9 -0.84 -1.37 -2.04 0.56 -1.52

4 1.86 1.44 28.46 2.75 0.89 -1.38 -2.21 0.48 -0.77

5 -0.72 0.93 14.21 -1.84 0.12 -0.61 -1.89 -1.33 -0.96



Iteration 5

Iteration no = 5 (rand1 = 0.41, rand2 = 0.38)

Particle i
Initial particle

f(x)
Individual best Global best Velocity Updated particle

x1 x2 x1 x2 x1 x2 v1 v2 x1 x2

1 -0.35 -0.25 26.06 0.85 2.06

-0.16 0.11

1.01 1.94 0.66 1.69

2 -0.16 0.11 6.97 -0.16 0.11 0.01 0.02 -0.15 0.13

3 0.56 -1.52 41.84 2.9 -0.84 1.23 1.59 1.79 0.07

4 0.48 -0.77 29.49 2.75 0.89 1.24 1.81 1.72 1.04

5 -1.33 -0.96 17.82 -1.84 0.12 0.41 1.51 -0.92 0.55



Optimization by PSO: Egg crate Function

Minimize )sin(sin25)(
2

2

1

22

2

2

1
xxxxxf 



X1 X2

f(x)
Known global minima at [0,0]
and optimum function value 0



Eggcrate Function Optimization by PSO
Position of the particles on a 2D parameter Space at different instances
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Constriction Factor

• C
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Clerc Introduced Constriction Factor  x

Vi
k+1 = x [Vi

k +

ϕ1 x (pbesti-si
k) + 

ϕ2 x (gbest-si
k) ]…..   (2)

X = 2 / [2 – ϕ – sqrt(ϕ2 - 4 ϕ)]

Φ = ϕ1 + ϕ2

Φ < 4 slow convergence > 4 faster convergence



The following weighting function is usually utilized 

w = wMax-[(wMax-wMin) x iter]/maxIter (2)

where   wMax= initial weight,

wMin = final weight,

maxIter = maximum iteration number,

iter = current iteration number.

si
k+1 = si

k + Vi
k+1 (3)

PSO Contin….

16/03/2007 48



Comments on the Inertial weight factor:

A large inertia weight (w) facilitates a global search while 
a small inertia weight  facilitates a local search.

By linearly decreasing the inertia weight from a relatively 
large value to a small value through the course of the 
PSO run gives the best PSO performance compared 
with fixed inertia weight settings.

Larger w ----------- greater global search ability

Smaller w ------------ greater local search ability.

PSO Contin….
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PSO Contin….

PSO Flow chart 

Start

Initialize particles with random position

and velocity vectors.

For each particle’s position (p) 

evaluate fitness

If  fitness(p) better than 

fitness(pbest) then pbest= p

L
o
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p
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n
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l 

a
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p
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a
u

st

Set best of pbests as gbest

Update particles velocity (eq. 1) and

position (eq. 3) 

L
o
o
p
 u

n
ti
l 
m

a
x
 i
te

r

Stop: giving gbest as optimal solution.
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Variants of PSO

• Discrete PSO ……………… can handle discrete binary 

variables

• MINLP PSO………… can handle both discrete binary and 

continuous variables.

• Hybrid PSO…………. Utilizes basic mechanism of PSO 

and the natural selection mechanism, which is usually 

utilized by EC methods such as GAs.
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How to Modify the Algo

• Ratnaweera, A., Halgamuge, S.K. and Watson, H.C. (2004)

‘Self-organizing hierarchical particle swarm optimizer with time-varying 

acceleration coefficients’, IEEE Transactions on Evolutionary Computation, Vol. 8, 

No. 3, pp.240–255

• C1(t) = 2.5 - 2 * (t / Max_iter) [Cognitive Learning Factor]

•

• C2(t) = 0.5 + 2 * (t / Max_iter)    [ Social Coefficient]



• Yamaguchi, T. and Yasuda, K. (2006) ‘Adaptive particle swarm optimization –

self-coordinating mechanism with updating information’, Proceedings of 2006 

IEEE International Conference on Systems, Man, and Cybernetics, pp.2303–

2308, IEEE CS Press.

• C2(t+1) = C2(t) + α* ( b - C2(t) )

α represents the influence about the previous social  parameter, 

b is a statistical variable
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Ge, Y. and Rubo, Z. (2005) ‘An emotional particle swarm

optimization algorithm’, Advances in Natural Computation,

Lecture Notes in Computer Science, Vol. 3612, pp.553–561,

Springer-Verlag Berlin, Germany.

• Emotion Based

• If Particle is Sad  C2(t+1) = C2(0) x (rk / rg)

• If Particle is Joyful C2(t+1) = C2(0) x (rk )
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Anti-predatory PSO

• The APSO is developed by splitting both the 

cognitive and social behaviors of the classical 

PSO into two parts

• The cognitive behavior is divided into good 

experience (memory about previous best

experience) and bad experience components 

(memory about previous worst experience). 

• The social behavior of the classical PSO is split 

into global good experience and global bad 

experience components. 16/03/2007 55
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Neighborhood Topologies

In the original PSO, two different kinds of 

neighborhoods were defined for PSO:

In the gbest swarm, all the particles are

neighbors of each other; thus, the position of

the best overall particle in the swarm is used in

the social term of the velocity update equation.

It is assumed that gbest swarms converge fast, 

as all the particles are attracted simultaneously 

to the best part of the search space.
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In the lbest swarm, only a specific

number of particles (neighbor count)

can affect the velocity of a given

particle. The swarm will converge slower

but can locate the global optimum with a

greater chance.
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Different neighborhoods can be characterized in terms of two factors

•The degree of connectivity, k, that measures the number of neighbors of a particle

•The amount of clustering C, that measures the number of neighbors of a particle 

that are also neighbors of each other

The following additional topologies were tested:

•Random

•Von Neumann, a two dimensional grid with neighbors to the N, E, W and S

•Pyramid, a three-dimensional triangular grid

•Star, all the particles connected to a central particle

•Heterogeneous, particles are grouped in several cliques



To know more

THE site:

Particle Swarm Central, http://www.particleswarm.net

Clerc M., Kennedy J., "The Particle Swarm-Explosion, 

Stability, and Convergence in a Multidimensional 

Complex Space", IEEE Transaction on Evolutionary 

Computation, 2002,vol. 6, p. 58-73.



Comparison with other evolutionary 

computation techniques.
• Unlike in genetic algorithms, evolutionary programming

and evolutionary strategies, in PSO, there is no selection

operation.

• All particles in PSO are kept as members of the population

through the course of the run

• PSO is the only algorithm that does not implement the

survival of the fittest.

• No crossover operation in PSO.

• In PSO balance between the global and local search can be

adjusted through the inertial weight factor (w)
60



(e) Ackley function, (f) Kennedy multimodal function generator (M=1 peaks),

(g) Kennedy multimodal function generator (M=10 peaks),

(h) Kennedy multimodal function generator (M=100 peaks).

(a) Rosenbrock function, (b) Rastigrin function, (c) Grienwank function, (d) Schwefel  function

Multi Modal Function
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1. Rosenbrock function

•

• Range: 

• Optimum: Min f = 0.0 for 

• Number of Variables N=500
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2. Rastigrin function

•

• Range: 

• Optimum: Min f = 0.0 for 

• Number of Variables N=500
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3. Griewank function

• Range: 

• Optimum: Min f = 0.0 for 

• Number of Variables N=500
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4. Schwefel function

•

• Range: 

• Optimum: Min f = 0.0 for 

• Number of Variables N=500
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5. Ackley function

•

• Range: 

• Optimum: Min f = 0.0 for 

• Number of Variables N=500
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6. Kennedy multimodal function 

generator

•

• Where  is the random matrix, i=1,…,N,   

j=1,…,M 

• Range: 

• Optimum: Min f = 0.0 for random 

• Number of Variables N =5, 10

• Number of Peaks M      =10, 100
67



OPTIMUM RESULTS AFTER 1000 

INDEPENDENT SIMULATION RUNS

68

Test Functions PSO

Avg. Std. Dev.

Rosenbrock (N=500) 3382.72 480.7856

Rastigrin (N=500) 5626.28 278.9639

Griewank (N=500) 1.214795 0.045499

Schwefel (N=500) 144703.83 12418.28

Ackley (N=500) 2.503970 0.186395

Kennedy (N=5,M=100) 0.000297 0.000000

Kennedy (N=10,M=10) 0.003017 0.000000

Kennedy(N=10,M=100) 0.122232 0.000000



Electricity Price Forecasting

Hybrid Tools and Techniques
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Uncertainty and Forecasting

• Traditionally, neural networks used
for prediction purposes give rise to a
point prediction when they are
presented with a set of input values.
However, there is always a degree of
uncertainty associated with any point
prediction.

• That uncertainty is attributable to
either structure of the model or the
inherent uncertainty in the data set
used for model development.

• Due to these reasons, point prediction
performance deteriorates and
predictions become unreliable.
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Uncertainty and Forecasting

• The reliability of point forecasts significantly drops due to the 
prevalence of uncertainty in operation of the system.

• Even if uncertainties are known or predictable, the targets will 
be multi-valued, making predictions prone to error. 

• This weakness is due to the theoretical point that NNs 
generate averaged values of targets conditioned on inputs.

• Such a reduction cannot be mitigated through changing the 
model structure or repeating the training process

• NN provide point predictions without any indication of their 
accuracy.

• Point predictions are less reliable and accurate if the training 
data is sparse, if targets are multi-valued, or if targets are 
affected by probabilistic events.
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Need for incorporating 

uncertainties

 When forecast results are presented to end 

users, they should be informed as to what 

extent they can be trusted.

 Availability of prediction intervals will allow 

the decision makers to efficiently quantify the 

levels of uncertainties associated with the 

point forecasts, and to consider a multiple of 

solutions for different conditions.   
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Confidence Intervals and Prediction 
Intervals

• Targets can be modeled as

t(x)=f(x)+e(x)

t(x)         observed target value

f(x)         true regression

e(x)        noise with zero mean

Training a ML algorithm is meant to estimate φ(x) i.e. 
an approximation of f(x). It is an estimation of the 
mean of the distribution of the target values given 
an input vector x.
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Confidence Intervals and Prediction 
Intervals

• Two measures of the confidence of this point 
prediction

1. Confidence intervals: accuracy of our estimate 
of true regression i.e. distribution of quantity 
f(x)- φ(x) 

2. Prediction intervals: estimate of confidence in 
prediction of targets themselves i.e. distribution 
of quantity t(x)- φ(x) 

• t(x)- φ(x)= [ f(x)- φ(x) ] + e(x)
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Uncertainty estimating 

techniques

• Delta technique: Based on the understanding that multilayer feedforward

neural networks are basically non-linear regression models which can be

linearized using Taylor’s series expansion .

• Bayesian technique : Each parameter in a neural network is considered

as a distribution rather than a single value and therefore the network

outcomes will also be in the form of distributions conditional on the

observed training set . It suffers from the limitation of massive

computational burden and calculation of Hessian matrix.

• Bootstrap method: Bootstrapping is a computer based statistical

technique proposed by which is meant to approximate the unknown

probability distribution of an estimator or statistic by an empirical

distribution obtained by a resampling process.
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Bootstrapping technique

• 1. Efficient and easy to use in comparison to Bayesian 
method involving complex computations.

• 2. It gives rise to input-dependent values for variance in 
comparison to the delta method which makes a strong 
case for its relevance in constructing reliable prediction 
intervals.

• 3.Non-parametric alternative to conventional methods and 
are designed to produce asymptotically correct coverage 
rates under no specific assumption about the error 
distribution.
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BOOTSTRAP METHOD FOR PI 

CONSTRUCTION

• Fusion of multiple estimators/models to 

improve the overall prediction performance

• 𝐵 training datasets are resampled from the original 

dataset with replacement.

• The method estimates the variance due to model mis-

specification,     , by building 𝐵 𝑁𝑁𝑦 models

• The true regression is estimated by averaging the 

point forecasts of 𝐵 models,
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Bootstrap technique
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Methodology

• Assuming that NN models are unbiased, the model 

mis-specification variance can be estimated using 

the variance of 𝐵 model outcomes,

• To construct PIs, we also need to estimate the 

variance of errors,      . The key idea is to develop a 

separate individual NN model, called         to provide an 

estimate of       when presented with an input vector.
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PI ASSESSMENT MEASURES

• PI Coverage Probability (PICP) is measured by 
counting the number of target values covered by 
the constructed Pi:

Where

• It is essential to assess PIs based on their width. 
Mean PI Width (MPIW) quantifies how wide 
constructed PIs are,
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Inferences from PI
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Experimental Results
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EXPERIMENTAL RESULTS

TEST

DAY
ANN ELM

MAPE PICP(%) MPIW MAPE PICP(%) MPIW

JAN 20 7.28 100 22.51 3.31 79.17 5.60

FEB 10 5.03 100 23.98 2.64 87.50 6.20

MAR 5 7.35 87.50 15.71 2.14 95.83 4.86

APR 7 9.84 95.83 26.15 4.12 83.33 8.56

MAY 13 8.59 83.33 9.06 2.33 91.67 3.98
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Results for Basic ELM model with 

different hidden nodes.
NODE

S

10 20 30 40 50 60 70 80 90

MAPE 5.55 4.46 4.10 3.89 3.68 3.58 3.48 3.42 3.37

PICP 79.17 62.50 62.50 66.67 66.67 66.67 66.67 66.67 66.67

MPIW 6.56 3.64 3.28 3.23 3.26 3.25 3.37 3.29 3.31
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Results for Basic ELM model with 

different number of Ensembles.
ENSEMBLES 10 50 100 200

MAPE 3.71 3.35 3.38 3.41

PICP(%) 79.17 79.17 83.33 83.33

MPIW 4.53 4.28 4.60 4.55

TIME(Sec) 188 846 1647 3325
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Biometric Based Personal
Authentication: An Introduction

Department of Electrical Engineering, IIT Delhi, New Delhi, India



 Every day we are required to authenticate ourselves

 Using a bank card with a PIN at a cash machine

 A password to log on to a computer

 Using a key to open a door

 Providing a passport and driving licence as proof of 

identity

 We need to be able to accurately IDENTIFY an 

individual to minimize current issues and threats

Introduction : The need to Identify

11/25/2018



Introduction: Is  Biometrics The  
Answer

A biometric is part of the person and is not easily 
compromised through:
Theft

Collusion

Loss

Simplifies user management resulting in cost savings

Users do not need to remember passwords

Users do not need to remember PINs

Easy to use
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Introduction: Biometric Definition

Biometrics Definition [International Biometrics Industry 

Association (IBIA)]

• “Biometrics technology involves automatic identification 

or verification of an individual based on physiological or 

behavioral characteristics.”

11/25/2018



Introduction:  Physiological  and 
Behavioural

 Physiological

 Fingerprint

 Iris

 Vein pattern

 Hand geometry

 DNA

11/25/2018

Behavioural

 Signature

 Gait

 Voice

 Keystroke dynamics



Introduction : Classes of biometrics
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 Iris-Based Biometrics

 Greatly affected by eye diseases like: cataract, viral infection

 Acquisition itself  a challenge

 Ear Based Biometrics

 Not a very potential biometrics

 Effective in combination with other biometric modalities

 Very less incorporated for multimodal Biometrics

 Multimodal System

 No efforts for combining uniqueness of  face, iris and ear for multimodal 
systems

 Selection of  effective fusion Scheme

 Simultaneous image acquisition for online verification itself  is very 
challenging task.  

Current Problems (Motivations)

11/25/2018
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 Face-Based Biometric Systems

 Digital Faces

 Pose variations

 Emotion Variation

 Light Illumination Problem

 Disguise 

 Identical Twins

 Thermal Faces

 Variation in facial thermograms due to change in Ambient temperature

 Little/Negligible effort for online applications

 Very less utilized in combination to other biometric modalities

Current Problems (Motivations)

11/25/2018
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 Face Authentication Using Infrared Thermal Imaging

 To reduce many problems associated with digital imaging in face 
recognition

Objectives

Facial thermograms: Stable at Pose Variations
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 Investigation of  Ear Based Authentication

 To reduce the shortcomings of  the individual Biometrics and 
achieve the better security standards 

 To investigate a novel multimodal (Face-based) biometric system 
based on Thermal faces, Irises, and Ears; never employed so far 
for online applications. 

Objectives

Multimodal System
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 An effective Fusion Scheme for Integration

 Feature Level Fusion Scheme for integration of  proposed modality 

 Decision Level Fusion Scheme as alternative to choose a better and relevant 
fusion scheme based on performance index. 

Objectives

The General Framework for Fusion of  Multimodal Biometrics
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 A Multimodal Database

 Building a Multimodal Database containing 2000 Thermal faces, Irises, and 
Ears of  200 individuals (10 images each)  

 To investigate the proposed approaches on the created database; not available 
so far for research purposes.  

Objectives

A Sample Multimodal Database
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 Skin Heat Transfer (SKT) based facial thermograms

 To tackle ambient temperature based within-class scatter of  facial images

Proposed Approaches (Face Recognition)

(a) Thermal data (Te=26.2 ◦C)  (b) Corresponding SKT data.
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 Radial Basis function (RBF) Neural networks based supervised 
clustering technique for classification

 To overcome the Linear subspace assumption by traditional methods like 
Fisher face approach and which is violated by Face data that contain much 
more overlapping

Proposed Approaches (Face Recognition)

Supervised clustering with homogeneous samples
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 Iris Authentication

 Localization of  Outer and Inner Boundary of  Iris to 
normalize images and reduce several acquisition problems   

Proposed Approaches (Iris Recognition)

(a) Iris sample image    (b) Image after fitting concentric circles
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 DWT and Gabor based Features

 Both Feature representation mechanism is utilized for final 
authentication    

Proposed Approaches (Iris Recognition)

(a) Gabor Based Strip Edge    (b) DWT Based Wave-Signature 
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 Euclidean and Hamming Distance based Classifiers

 Matching Scores for each classifiers are computed separately.

 Turbo code based mechanism for final concatenation of  Scores

Proposed Approaches (Iris Recognition)

Block Diagram representing the Turbo Code analogy
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 ROI Segmentation

 Level Set Formulation technique for segmenting ear from image.

 Laplacian and Canny Based Edge detection

Proposed Approaches (Ear Recognition)

Level Set Segmented Ear Ear Edge
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 Texture and Geometrical Features

 Concentric circle method for distance and angle features .

 Least Square curve approximation based shape features

 Gray values based Textural Features

Proposed Approaches (Ear Recognition)

Curve Approximation of  

Outer Ear

Concentric Circles for inner 

Ear
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 Feature Fusion

 Fuzzifier to assign a different confidence level to every input feature 
vector 

 Ranking all of  the useful data for feature selection.

 Feature reduction techniques to extract a small number of  from the larger 
set of  features

Proposed Approaches (Fusion techniques)

Feature Level Fusion

Final 

Features
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 Decision Fusion

 Error rates based Decisions (FAR/FRR) 

 Bayesian cost (a weighted sum of  FAR and FRR) based objective function 
and Binary Fusion Rules based integration 

 Evolutionary swarm intelligence algorithm (PSO) based Parameters 
selection

Proposed Approaches (Fusion techniques)

Decision Level Fusion
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