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Ø Act of obtaining the best result under given circumst
ances 

              
               OPTIMAL DESIGN PROCEDURE 

OBTAIN SOLUTION 

NEED FOR OPTIMIZATION 

CHOOSE VARIABLES 

FORMULATE CONSTRAINTS 

FORMULATE OBJ FUNCTION 

CHOOSE OPT .ALGORITHM 

SET VARIABLE BOUNDS 

Optimization 



              Single Vs Multi-objective 

Single Objective Optimization:  
When an optimization problem involves only one objective functio
n, the task of finding the optimal solution is called single-objective
 optimization. 
 
Example: Find out a CAR for me with Minimum cost. 
 
Multi-objective Optimization: When an optimization problem in
volves more than one objective function, the task of finding one or 
more optimal solutions is known as multi-objective optimization. 
 
Example: Find out a CAR for me with minimum cost and maxim
um comfort. 



Examples on Multiple Objectives 
•  Car design: 

•  Need to reduce drag since this impacts on petrol consumption. 
•  Needs to be able to accommodate people (!!!) and provide reas

onable amount of other carrying space, e.g. for luggage. 
•  Needs to have an aesthetic appeal (but people’s tastes differ). 
•  Performance related factors: speed, acceleration and weight of 

vehicle. 
•  Strength…but also ability to absorb impacts. 
•  And so on… 



   So what is the general problem
? 

•  The Multiobjective optimization problem (M
OP) can be defined as the problem of finding [
Osyczka 1985] a vector of decision variables w
hich satisfies constraints and optimizes a vect
or function show elements represent the objec
tive functions. 

•  Hence, the term “optimize” means finding suc
h a solution which would give the values of all 
objective functions acceptable to the designer. 
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  SOOP   AND    MOOP 
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Mathematical formulation 



               Single Vs Multi-objective: A Simple         
                                     Visualization 
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           Another example  
Which means of transport we should choose?  
It might depend on how far we need to go or how chea
p we need it to be as shown in Figure  



In single objective optimization superiority of
 a solution is determined by the comparison o
f their objective function values 
 
 
 
In multi-objective optimization goodness of t
he solution is determined by the dominance 
 
 



•  Multi-objective optimization (MOO) is the optimizat
ion of conflicting objectives. 

•  Suppose you need to fly on a long trip: 
Should you choose the cheapest ticket (more connect
ions) or shortest flying time (more expensive)? 

•  Also, the relative importance will vary. 
•  There may be an emergency you need to go fix quickly. 
•  Or, maybe you are on a very tight budget. 



Pareto-Optimal Solutions Example 

•  Suppose for our airplane-trip, we find the followin
g tickets: 

Ticket Travel Time 
(hrs) 

Ticket Price 
($) 

A 10 1700 
B 9 2000 
C 8 1800 
D 7.5 2300 
E 6 2200 



Comparison of Solutions 

•  If we compare tickets A & B, we can’t say that eith
er is superior without knowing the relative import
ance of Travel Time vs. Price. 

•  However, comparing tickets B & C shows that C is
 better than B in both objectives, so we can say tha
t C “dominates” B. 

•  So, as long as C is a feasible option, there is no rea
son we would choose B. 



            Comparison of Solutions 

•  If we finish the comparisons, we also see that 
D is dominated by E. 

•  The rest of the options (A, C, & E) have a trad
e-off associated with Time vs. Price, so none is
 clearly superior to the others. 

•  We call this the “non-dominated” set of solutio
ns become none of the solutions are dominate
d. 



            Graph of Solutions 

•  Usually, solutions of this type form a typical shape,
 shown in the chart below: 
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          Types of Solutions 
•  Solutions that lie along the line are non-dominated solutions 

while those that lie inside the line are dominated because ther
e is always another solution on the line that has at least one o
bjective that is better. 

 
•  The line is called the Pareto front and solutions on it are calle

d Pareto-optimal. 

•  All Pareto-optimal solutions are non-dominated. 

•  Thus, it is important in MOO to find the solutions as close as 
possible to the Pareto front & as far along it as possible. 
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Pareto Optimum: Definition 

•  A candidate is Pareto optimal iff: 
•  It is at least as good as all other candidates for all objectives, and 
•  It is better than all other candidates for at least one objective. 

•  We would say that this candidate dominates all oth
er candidates. 



Mathematically 
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(assuming we are trying to minimize the objective functions). 
(Coello Coello 2002) 



Graphical Depiction of 
Pareto Optimal Solution 
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Pareto Front 

(Tamaki et al. 1996) 



(HANDLING MULTIOBJECTIVITY) 
What does optimum mean here? 

•  Having several objective functions implies that we are tr
ying to find a good compromise rather than a single opti
mal solution.   

•  Francis Ysidro Edgeworth first proposed a meaning for 
“optimum” in 1881 which was generalized in 1896 by Vil
fredo Pareto 

•  The concept of optimizing one performance on the cost o
f other is termed as Pareto optimality. 

     objective functions.  
 

•  The trade-off curve is also said to be Pareto optimal fron
t and the points over it are termed as Pareto optimal poi
nts. 

 
 



Pareto Principle  

•  “The Vital Few and Trivial Many Rule”  
While the rule is not an absolute, one should use it as a guid
e and reference point to ask whether or not you are truly fo
cusing on: 
  

20% - The Vital Few 
or  

80% - The Trivial Many 
 
 
True progress results from a consistent focus on the 20% m
ost critical objectives.  



•  A small number of causes are responsible for a large
 percentage of the effect- 

           -usually a 20-percent to 80-percent ratio. 

•  This basic principle translates well into quality prob
lems - most quality problems result from a small nu
mber of causes.  

•  You can apply this ratio to almost anything, from the
 science of management to the physical world  

            Pareto Principle  



Addressing the most troublesome 20% of the problem will solv
e 80% of it.   
 
Within your process, 20% of the individuals will cause 80% of 
your headaches.   
 
Of all the solutions you identify, about 20% are likely to remai
n viable after adequate analysis.  
 
80% of the work is usually done by 20% of the people. 



80% of the quality can be gotten in 20% of the time -- perf
ection takes 5 times longer 
 
20% of the defects cause 80% of the problems.  
 
Project Managers know that 20% of the work (the first 10
% and the last 10%) consume 80% of the time and resourc
es. 
 



Dave Powell, Elon University, dpowell2@elon.edu
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Different Pareto Optimal Fronts 

Figure from Deb p. 32 
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Why Evolutionary Approach to MOOP ? 
 

•  The major part of earlier mathematical research has concentrated on optimizatio
n problems where the functions were linear, differentiable, convex, or otherwise 
mathematically well behaving.  

•  However, in practical problems, objective functions are often nonlinear, non-diffe
rentiable, discontinuous, multi-modal etc. and no presumptions can be made abo
ut their behaviour.  

•  Most traditional optimization methods cannot handle such complexity or do not 
perform in some cases in which the assumptions, upon which they are based do n
ot hold.  

•  For such problems, stochastic optimization methods such as EAs have been imple
mented effectively because they do not rely upon assumptions concerning the obj
ective and constraint functions. 

•   EAs are stochastic search and optimization heuristic derived from the classic evo
lution theory, working on a population of potential solutions to a problem. The b
asic idea is that if only those individuals reproduce, which meet a certain selectio
n criteria, the population will converge to solutions that best meet the selection cr
iteria 



Classification of MOEA  

    Hwang and Masud (1979) and later Miettinen (19
99) fine-tuned the earlier classifications and sugg
ested the following three main classes based on th
e preference articulation of the DM: 

•  A Priori Preference Articulation:  
•   Progressive Preference Articulation:    
•  A Posteriori Preference Articulation:  

Your Answer 

( )→decidesearch

( )↔decidesearch

( )→searchdecide
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Classification of MOEA contd… 



                 Priori  
(Weighted Sum Approach) 

Optimize  
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As we converted it into single objective we can now proceed
 using any EA with its associated operators. 

Hopefully we will get an optimal solutions. 

Problem: How to fix these weights? (Static/Dynamic) 
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  Advantages and Disadvantages 

•  Efficient and easy to implement 
•  It does not have an explicit mechanism to maintain

 diversity.   
•  It doesn’t necessarily produce non-dominated vect

ors. 
•  No consideration of multi-objective nature of prob

lem 
•  Each run will lead to only one final solution point (

one point on Pareto front) 
•  Can not handle non-convexities of the Pareto front 
•  It is difficult to set the weight vectors 



                      Posteriori 
Pareto Approach from EA Domain 

VEGA (Vector Evaluated Genetic Algorithms) 
         (Contributed by David Schaffer in 1984). 
VOES(Vector Optimized Evolution Strategy) contributed by Frank Kursawe 

in 1990. 
MOGA (Multi-objective GA) introduced by Fonseca and Fleming in 1993. 
NSGA (Non-dominated Sorting GA) introduced by Srinivas and Deb in 1994.  
NPGA (Niched-Pareto Genetic Algorithm) introduced by Horn et al. in 1994. 
PPES (Predator-Prey Evolution Strategy) introduced by Laumanns et al. in 1

998. 
Nash GA introduced by Sefrioui and Periaux in 2000, motivated by a game th

eoretic approach. 
REMOEA (Rudolph’s Elitist MOEA) introduced by Rudolph in 2001. 
NSGA-II by Deb et a. in 2000.  
MOPSO by C. Coello and so on……………………..  



  Classifying EMOO approaches 
(Evolutionary Multi-Objective Optimization) 

•   First Generation  
•  Non-Pareto approaches 
•  Pareto approaches 

•  Second Generation  
•  PAES 
•  SPEA 
•  NSGA-II 
•  MOMGA 
•  micro-GA 



  

What are Genetic Algorithms ? 

q Bio-Inspired artificial intelligence class of probabilistic 
   optimization algorithms 
q Developed by John Holland (1975) 
q Influenced by Darwin’s Origin of species (Survival of  
   the fittest) 
q Well-suited for nonlinear/hard problems with a large 
   search space 
 



GENETIC ALGORITHMS 
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Multi point searching methods 

ELITISM 



WHY USE GA ? 

•  They perform well in problems for which the
 fitness landscape is complex - ones  

•  Where the fitness function is noisy, changes o
ver time, or has many local optima.  

•  Knows nothing about the problems they are 
deployed to solve.  



Non Dominated Sorting based Genetic Al
gorithm II (NSGA-II) 

•  Developed at KanGAL (Prof K. Deb) 
•  Superior to most of the MOEA in the research arena today 
•  Uses Elitism 
•  Famous for Fast non-dominated search 
•  There were some major drawbacks in NSGA such as 

•  High computational complexity of nondominated sorting 
•  Lack of elitism 
•  Lack of specification of sharing parameter 
•  Deb et al. proposed an improved version of NSGA, called NS

GA-II which dealt all the drawbacks of original NSGA 



Let P and Npop be the current population in NSGA-II and th
e population size, respectively ( i.e.                  , Then the outl
ine of NSGA-II can be written as follows : 

Npop=P

Pareto ranking and a crowing measure are used to evaluate each sol
ution in each step. The binary tournament selection is used in Step 
3 to choose parent solution.  





Important Definitions 
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ADVANTAGES AND DISADVANTAGE
S 
 •  THE DIVESITY AMONG NON-DOMINATED SOLUTIONS IS MAI

NTAINED USING THE CROWDING PROCEDURE :NO EXTRA C
ONTROL IS NEEDED 

•  ELITISM PROTECS AND ALREADY FOUND PARETO-OPTIMAL
 SOLUTION FROM BEING DELETED 

•  WHEN THERE ARE MORE THAN N MEMBERS IN THE FIRST N
ON-DOMINATED SET, SOME PARETO-OPTIMAL SOLUTIONS 
MAY GIVE THEIR PLACES TO OTHER NON-PARETO-OPTIMA
L SOLUTION 



   Thanks a lot  


